
 

 

 

SMART: Analyzing the Reuse Potential  

of Legacy Components in a  

Service-Oriented Architecture  

Environment 

Grace A. Lewis 

Edwin J. Morris 

Dennis B. Smith 

Soumya Simanta 

June 2008 

TECHNICAL NOTE 

CMU/SEI-2008-TN-008  

Integration of Software-Intensive Systems (ISIS) Initiative 
Unlimited distribution subject to the copyright. 

 



 

This work is sponsored by the U.S. Department of Defense.  

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. 

Department of Defense.  

Copyright 2008 Carnegie Mellon University.  

NO WARRANTY  

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 

FURNISHED ON AN ―AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED 

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 

COPYRIGHT INFRINGEMENT.  

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.  

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and ―No Warranty‖ statements are included with all reproductions and 

derivative works.  

External use. Requests for permission to reproduce this document or prepare derivative works of this document for 

external and commercial use should be directed to the permission@sei.cmu.edu.  

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 

and development center. The Government of the United States has a royalty-free government-purpose license to 

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, 

for government purposes pursuant to the copyright license under the clause at 252.227-7013.  

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site 

(http://www.sei.cmu.edu/publications/pubweb.html).



 

 SOFTWARE ENGINEERING INSTITUTE | i 

Table of Contents 

Abstract vii 

1 Introduction 1 

2 Basic SOA Concepts 2 

3 Challenges of Migration to SOA Environments 3 
3.1 Legacy System Challenges 3 
3.2 SOA Environment Challenges 4 

4 Service Migration and Reuse Technique (SMART) 6 
4.1 Four Elements of SMART 6 
4.2 The SMART Process 7 

4.2.1 Establish Context 8 
4.2.2 Migration Feasibility Decision Point 8 
4.2.3 Define Candidate Services 9 
4.2.4 Describe Existing Capability 9 
4.2.5 Describe Target SOA Environment 10 
4.2.6 Analyze the Gap 10 
4.2.7 Develop Strategy 11 

5 Application of SMART to a Mission Status System 13 
5.1 Establish Context 13 
5.2 Migration Feasibility Decision Point 14 
5.3 Define Candidate Services 14 
5.4 Describe Existing Capability 14 
5.5 Describe Target SOA Environment 15 
5.6 Analyze the Gap 16 
5.7 Develop Strategy 17 

6 Conclusions and Next Steps 20 

Appendix A The Service Migration Interview Guide (SMIG) 22 
A1. Establish Context 22 
A2. Preparation for Next Steps 25 
A3. Define Candidate Services 25 
A4. Describe Existing Capabilities 26 
A5. Describe Target SOA Environment 28 

Appendix B - The SMART Tool 31 
B1. SMART Tool Components 31 

B1.1. SMART Client 31 
B1.2. SMART Server 32 

B2. Tool Usage Scenario 33 

References 35 

 

  



ii | CMU/SEI-2008-TN-008 



 

 SOFTWARE ENGINEERING INSTITUTE | iii 

List of Figures 

Figure 1: High-Level Representation of a Service-Oriented System 2 

Figure 2: The SMART Process 7 

Figure 3: Notional Architecture for the Service-Oriented System Based on MSS 16 

Figure 4: Service Reference Architecture for MSS Services 18 

Figure 5: SMART Family 21 

Figure 6: Screenshot of the SMART Client 32 

Figure 7: Screenshot of the SMART Server 33 

 



iv | CMU/SEI-2008-TN-008 



 

 SOFTWARE ENGINEERING INSTITUTE | v 

List of Tables 

Table 1: SMART Activities and Artifacts 12 

Table 2: Options for Short-Term Feasibility Demonstration 17 

Table 3: Suggested Migration Iterations 17 

Table 4: Business and Technical Context 23 

Table 5: Stakeholders 23 

Table 6: Legacy System and Target SOA Environment 24 

Table 7: Candidate Service Identification 24 

Table 8: Define Candidate Services 25 

Table 9: Legacy System Characteristics 26 

Table 10: System Architecture 27 

Table 11: Code Characteristics 27 

Table 12: Target SOA Environment Characteristics 28 

Table 13: Support 30 

 

  



vi | CMU/SEI-2008-TN-008 

  



 

 SOFTWARE ENGINEERING INSTITUTE | vii 

Abstract 

Service-oriented architecture (SOA) has become an increasingly popular mechanism for achiev-

ing interoperability between systems. Because it has characteristics of loose coupling, published 

interfaces, and a standard communication model, SOA enables existing legacy systems to expose 

their functionality as services, presumably without making significant changes to the legacy sys-

tems. Migration of legacy systems to service-oriented environments has been achieved within a 

number of domains including banking, electronic payment, and development tools showing 

that the promise is beginning to be fulfilled.  

While migration can have significant value, any specific migration requires a concrete analysis of 

the feasibility, risk, and cost involved. This technical note describes a new release of the Service 

Migration and Reuse Technique (SMART), which was initially developed in 2005. The Carnegie 

Mellon
®
 Software Engineering Institute (SEI) SMART process helps organizations to make initial 

decisions about the feasibility of reusing legacy components as services within an SOA environ-

ment. SMART considers the specific interactions that will be required by the target SOA envi-

ronment and any changes that must be made to the legacy components. To achieve this, SMART 

gathers information about legacy components, the target SOA environment, and candidate servic-

es to produce (1) a preliminary analysis of the viability of migrating legacy components to servic-

es, (2) an analysis of the migration strategies available, and (3) preliminary estimates of the costs 

and risks involved in the migration. 

  



viii | CMU/SEI-2008-TN-008 

 

 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 1 

1 Introduction 

Service-oriented architecture (SOA) has become an increasingly popular mechanism for achiev-

ing interoperability between systems. Because it has characteristics of loose coupling, published 

interfaces, and a standard communication model, SOA enables existing legacy systems to expose 

functionality as services, presumably without making significant changes to those systems. Migra-

tion of legacy components to services has been achieved in a number of domains—including 

banking, electronic payment, and development tools—showing that the promise is beginning to be 

fulfilled [Chung 2005, Polmann 2002, Radha 2004, Zhang 2004]. While migration can have sig-

nificant value, any specific migration requires a concrete analysis of the feasibility, risk, and cost 

involved.  

This report discusses the role of SOA and presents the Carnegie Mellon
®
 Software Engineering 

Institute (SEI) Service Migration and Reuse Technique (SMART)—a technique to help organiza-

tions make initial decisions about the feasibility of reusing legacy components as services within 

an SOA environment. SMART was initially developed in 2005 [Lewis 2005, Lewis 2006]. The 

version of SMART outlined in this report represents a significant new release that has been re-

vised based on experience with the process.  

Section 2 of this report provides an overview of basic SOA concepts. Section 3 presents the chal-

lenges of migrating legacy components to an SOA environment. Section 4 presents the SMART 

process. Section 5 presents a case study of SMART applied to a real migration project. Finally, 

Section 6 provides conclusions and next steps. 

 
®
  Carnegie Mellon is registered in the U. S. Patent and Trademark Office by Carnegie Mellon University. 



2 | CMU/SEI-2008-TN-008 

2 Basic SOA Concepts 

SOA is a way of designing systems composed of services that are invoked in a standard way. 

SOA is an architectural style—it is neither a system architecture nor a complete system. At a high 

level, a service-oriented system is composed of 

 Services: reusable components that represent business or mission tasks, such as customer 

lookup, weather, sensor placement, account lookup, or credit card validation. Services can be 

globally distributed across organizations and reconfigured to support new tasks or missions. 

They are reusable because they can be used by a number of business processes or mission 

threads. They usually provide coarse-grained functionality, such as customer lookup, as op-

posed to finer-grained functionality such as customer address lookup. 

 Service Consumers: These are clients for the functionality provided by the services. Some 

examples of service consumers are end-user applications, portals, internal or external sys-

tems, or even other services in the context of composite services. In a typical business set-

ting, an order processing application may use services such as customer lookup, credit check, 

and item lookup that are derived from a number of sources inside and outside the enterprise. 

 SOA Infrastructure: The infrastructure connects service consumers to services. It usually 

implements a loosely coupled, synchronous or asynchronous, message-based communication 

model, but other mechanisms are possible. The infrastructure often contains elements to sup-

port service discovery, security, and other operations. A common SOA infrastructure is an 

Enterprise Service Bus (ESB) to support web service environments. The Army System of 

Systems Common Operating Environment (SOSCOE) and Defense Information Systems 

Agency (DISA) Net-Centric Enterprise Services (NCES) are two examples of SOA infra-

structures within the U. S. Department of Defense (DoD).  

A notional representation of a service-oriented system is shown in Figure 1. 

 

 

Figure 1: High-Level Representation of a Service-Oriented System 

End User 

Application

Service 

A

SOA Infrastructure

Enterprise 

Information System 

Portal

Internet

External 

System

Service 

B

Service 

C

Service 

D

Internal Users

DiscoverySecurity
Development 

Tools

Legacy or New 

Service Code 

Internal 

System

Service Consumers

Infrastructure

Service 

Implementation

Service Interfaces

External 

Consumer



 

 SOFTWARE ENGINEERING INSTITUTE | 3 

3 Challenges of Migration to SOA Environments 

One of the most attractive promises of an SOA environment is that it enables reuse of legacy sys-

tems, thereby providing a significant return on the investment in these systems. However, migrat-

ing legacy systems is neither automatic nor easy. Traditional reuse challenges apply to SOA envi-

ronments, but those challenges are heightened in both positive and negative ways by the 

granularity of what is exposed through reuse [Morisio 2002]. Reuse in the SOA context is typical-

ly most effective when the services correspond to coarse-grained business or mission functionali-

ty, such as order placement or flight path calculation where all underlying technical details are 

encapsulated by a standard service interface.  

Service consumers and service providers experience the effect of legacy system migration in dif-

ferent ways. Service consumers benefit because functionality can be acquired, rather than devel-

oped, leading to potential savings. However, those acquired services have to be used ―as-is.‖ If the 

available services do not match their needs, service consumers may see incompatibilities with 

their existing business processes. Service providers face the challenge of providing a service that 

applies to many service consumers, yet still adds value. The following sub-sections provide great-

er detail of the nature of these challenges.  

3.1 LEGACY SYSTEM CHALLENGES 

Because of technical constraints, it may not always be possible to reuse functionality of legacy 

systems by exposing it as a service. Some of these technical constraints stem from the nature of 

the legacy system, and others are because of immature technology for a particular legacy envi-

ronment. As a result, the cost of exposing parts of a legacy system as services could be higher 

than actually replacing the legacy system with a new service-oriented system. Some situations in 

which it would be less expensive to replace than reuse are as follows: 

 If user interface code is tightly coupled with business or mission function code, there will be 

a large amount of rework to separate out what is purely functional, given that services should 

be user-interface agnostic. 

 If the target SOA environment is Web Services,
1
 XML and SOAP libraries may not available 

for all legacy platforms. 

 The synchronous behavior of the legacy system may be in conflict with the asynchronous 

nature of SOA environments. 

 A batch-oriented legacy system may be in conflict with the request-response nature of SOA 

environments where a user expects a close-to-immediate response. 

 An organization might run into licensing issues with underlying commercial products where 

functionality is now exposed to a greater number of consumers, potentially outside the or-

ganization. 

 
1
  The most common (but not only) form of SOA implementation is that of web services, in which (1) service inter-

faces are described using Web Services Description Language (WSDL), (2) payload is transmitted using Simple 

Object Access Protocol (SOAP) over Hypertext Transfer Protocol (HTTP), and, optionally, (3) Universal De-

scription, Discovery and Integration (UDDI) is used as the directory service. 



4 | CMU/SEI-2008-TN-008 

To make effective decisions, people managing legacy system migration to SOA environments 

need to identify relevant and non-relevant legacy components and choose which ones to investi-

gate through ―hands-on,‖ contextual analysis. In support of the decision-making process, those 

individuals need estimates of cost and risk, as well as confidence in those estimates, for each leg-

acy component. 

3.2 SOA ENVIRONMENT CHALLENGES 

The complexity of the migration will largely depend on the characteristics of the SOA environ-

ment. Some examples of those characteristics are as follows: 

 The user community for a service-oriented system can be known, as in the case of services 

exposed within a single organization. Or the user community can be unknown, as in the case 

of services exposed to the general public via the internet. It stands to reason that the larger 

and more unknown the community, the larger and more complex the migration challenges. A 

number of questions need to be addressed, including the following: 

 How will the services be used? What information is expected to be exchanged? In what 

format? 

 What is the right granularity for the service? How generic should it be? 

 Will the services scale to the size of the user community? How will performance be af-

fected? 

 What security measures need to be taken, given the nature of the user community? 

 What operational procedures need to be in place? 

 Once services are deployed, what is the procedure for change management? How can 

changes be promulgated to potentially unknown users? 

 There are many ways to implement service-oriented systems. On one end of the spectrum, 

there are basic implementations, typically based on widely available technologies and stan-

dards such as web services. On the other end of the spectrum, there are proprietary imple-

mentations where certain technologies are selected to satisfy specific provider or consumer 

requirements such as performance or security. These proprietary environments will require 

greater effort to understand the technologies involved, tool availability, and constraints 

placed on service consumers and providers. 

 The rationale for the migration to services might be to eliminate redundant functionality and 

data through data services or a shared data model. If this is the case, a number of questions 

need to be addressed, such as 

 Will data be accessible only through new data services?  

 Will legacy systems that will continue to work stand alone need to be modified to access 

the new data services?  

 Does the shared data model contain all of the data needed by the legacy components?  

 Are the current and shared data models compatible? 

 A stand-alone system with a current set of users can become a component of a system of 

systems by exposing services. If this is the case, the system now has two sets of users—

internal users and service consumers. This creates potential for conflicting requirements, 

more complex change management procedures, and performance degradation. 



 

 SOFTWARE ENGINEERING INSTITUTE | 5 

These potential issues highlight the need for an upfront and hands-on analysis of technical feasi-

bility and the resultant return on investment in order to avoid last-minute surprises. The issues 

involved go beyond adding a service interface to an existing system.  



6 | CMU/SEI-2008-TN-008 

4 Service Migration and Reuse Technique (SMART) 

SMART is an approach for making decisions on the migration of legacy components to services. 

It analyzes the viability of reusing legacy components as the basis for services by answering these 

questions:  

 Does it make sense to migrate the legacy system to services? 

 What services make sense to develop? 

 What components can be mined to derive these services? 

 What changes are needed to accomplish the migration? 

 What migration strategies are most appropriate? 

 What are the preliminary estimates of cost and risk? 

4.1 FOUR ELEMENTS OF SMART 

SMART consists of four elements: 

1. The SMART Process is a systematic means to gather information about the legacy compo-

nents, the candidate services, and the target SOA environment. 

2. The Service Migration Interview Guide (SMIG) guides the discussions during the initial 

SMART process activities. It contains more than 60 categories of questions that gather infor-

mation about the migration context, the legacy components, the candidate services, and the 

target SOA environment. The goal of using the SMIG is to assure broad and consistent cover-

age of the factors that influence the cost, effort, and risk in migration to services. Each ques-

tion in the SMIG is associated with potential migration issues or aspects that are known to re-

quire extra cost or effort. A representative subset of the SMIG is included in Appendix A. 

3. Using the SMIG as a framework, the SMART Tool automates data collection and relates an-

swers to questions to potential risks to mitigation strategies. Then, answers and associated in-

formation yield a draft migration strategy and migration issues list. The tool also consolidates 

data from multiple engagements for trend analysis. The SMART Tool is described in Appen-

dix B. 

4. Artifact Templates for output products are created as part of the process. These templates, 

which are initially populated by the SMART Tool, include the following: 

 Stakeholder List: Contains the information about all stakeholders who will provide in-

put into the process—sponsors, managers, system developers, system maintainers, sys-

tem architects, representatives of service consumers, and IT staff 

 Characteristics List: Contains the list of characteristics that needs to be gathered about 

each component targeted for migration. It initially contains basic information such as 

name, function, size, language, operating platform, age and gets updated as migration 

issues are identified. 

 Migration Issues List: Contains the list of migration issues that are identified during the 

information-gathering activities 



 

 SOFTWARE ENGINEERING INSTITUTE | 7 

 Business Process-Service Mapping: Contains the mapping between main business 

processes and candidate services  

 Service Table: Contains information about candidate services such as description, asso-

ciated legacy components, inputs, and outputs 

 Component Table: Contains information about legacy components targeted for migra-

tion as identified in the Characteristics List 

 Notional Service-Oriented System Architecture: Presents a high-level view of the sys-

tem architecture showing service consumers, infrastructure components, services, and 

legacy components, as well as their interaction 

 Service-Component Alternatives: Presents the different options for satisfying candidate 

service requirements. Options are wrap, extract, create new, rewrite in a different lan-

guage, add external service, acquire commercial product, or fashion any combination of 

the above. 

 Migration Strategy: Contains the migration strategy for the targeted legacy components, 

as well as guidance for future migration efforts 

4.2 THE SMART PROCESS 

The SMART process has six activities and one major decision point, as illustrated in Figure 2. 

The activities are iterative: data gathered in one activity may provide questions that require revi-

siting an earlier activity for additional information. The following sub-sections outline each of 

these activities. 

 

Figure 2: The SMART Process 

  

Describe 

Existing 

Capability

Describe 

Target SOA 

Environment

Analyze the 

Gap

Develop 

Migration 

Strategy

Migration 

Feasible?
No

Define 

Candidate 

Services

YesYes

Establish 

Migration 

Context



8 | CMU/SEI-2008-TN-008 

4.2.1 Establish Context 

The Establish Context activity has the following tasks: 

 Understand the business and technical context for migration. In this activity, information is 

gathered about the rationale, goals, and expectations for migration to an SOA environment, 

the technical and business drivers, programmatic constraints such as budget and schedule, 

and any previous related efforts or analyses. 

 Identify stakeholders. Information is gathered to identify who (1) is driving and paying for 

the effort, (2) knows about the legacy system and the target SOA environment (and what 

they know), and (3) creates the demand or need for potential services. 

 Understand the legacy system and target SOA environment at a high level. Basic information 

about the legacy system is gathered, such as main functionality, size, technologies, age, his-

tory, and users. Of interest about the target SOA environment at this point are status, tech-

nologies, main components, and history. 

 Identify a set of candidate services for migration. The selection of candidate services is both 

a top-down and a bottom-up approach guided by business or mission goals and the functio-

nality that exists in the legacy system, as indicated by the following steps: 

1. Identify business or mission goals 

2. Identify key business processes or mission threads that support these goals 

3. Identify common steps or tasks in these processes or threads 

4. Identify functionality from the legacy system to support these steps/tasks 

5. Negotiate to select a number of the steps as candidate services 

During the Establish Context activity, the following artifacts are initially developed: 

 stakeholder list  

 migration issues list  

 characteristics list  

 business process-service mapping  

Because SMART features an iterative process, these artifacts are updated through the rest of the 

activities as additional information is gathered, as Table 1 on page 12 shows. 

4.2.2 Migration Feasibility Decision Point 

After the Establish Context activity, there is an explicit decision point to determine if the legacy 

system is a good candidate for migration to services (denoted in Figure 2 by the diamond shape 

labeled Migration Feasible?). If the legacy system is not a good candidate, stopping at this point 

will save time and money. A decision to stop is a positive outcome of the SMART analysis be-

cause it preserves valuable resources for other activities.  

Potential determinations are 

 There is enough migration potential to continue the analysis. 

 Migration goals are clear and shared among stakeholders. 

 There is a high-level understanding of the legacy system and the target SOA environ-

ment. 



 

 SOFTWARE ENGINEERING INSTITUTE | 9 

 Candidate services and potential service consumers have been identified. 

 A very preliminary mapping of services to legacy components has been done. 

 The migration has potential but requires additional information to make an informed deci-

sion and continue with the SMART process. This additional needed information may include 

 greater articulation of business goals needed to in order to clearly understand what is ex-

pected from the migration 

 identification of potential service consumers in order to provide a clear justification of 

the need for the services 

 availability of key stakeholders to support the process: project sponsors, legacy system 

developers/maintainers, future service developers, and target SOA environment owners 

 identification of target SOA environment 

 The migration is not feasible. Some indications that the migration is not feasible are 

 There are no identifiable consumers for the services to be migrated from the legacy sys-

tem. 

 Functionality in the legacy system does not have potential for use by multiple consum-

ers. 

 No functionality in the legacy system of a stateless nature.
2
 

 Adequate input for the candidate services would require the construction of very com-

plex applications. 

 There appears to be incompatibility between the legacy system and the target SOA envi-

ronment. 

4.2.3 Define Candidate Services 

Provided that a decision is made that migration is feasible, the process continues with an activity 

to define the candidate services. The goal of this activity is to select a small number of services 

(usually 3 to 4) from the initial list of candidate services that were identified as part of the Estab-

lish Context activity. Good candidate services are ones that perform concrete functions, have clear 

inputs and outputs, and can be reused across a variety of potential applications. These candidate 

services are now specified more completely to include a definition of service inputs and outputs, 

and quality of service (QoS) requirements. 

The Service Table artifact is created during this activity and updated in the other information ga-

thering activities that occur in parallel—Describe Existing Capability and Describe Target SOA 

Environment. (See Table 1 on page 12.) 

4.2.4 Describe Existing Capability 

The goal of this activity is to gather information about the legacy system components that contain 

the functionality meeting the needs of the services selected in the Define Candidate Services ac-

tivity. Technical personnel are questioned about system aspects such as 

 descriptive data about legacy components—name, function, size, language, operating plat-

form, age 

 
2
  In a request-response mode, a stateless nature means that no variables need to be maintained between re-

quests. It does not mean that there cannot be a state change within the legacy system, such as a change in the 

information stored in a database.  



10 | CMU/SEI-2008-TN-008 

 architecture views 

 design paradigms 

 system quality 

 change history 

 user satisfaction 

 existing problems 

Additional information needed about components will be determined by the migration issues that 

emerge during the process. For example, if the legacy system has dependencies on commercial 

products that potentially may experience problems in the target service-oriented environment, it is 

important to know if the specific components targeted for migration share those dependencies. An 

analysis of options for dealing with these dependencies is determined during the Analyze the Gap 

activity. 

The Component Table artifact is created during this activity and updated in the other information 

gathering activities as needed. (See Table 1 on page 12.) 

4.2.5 Describe Target SOA Environment 

This activity gathers information about the target SOA environment for the selected services in-

cluding 

 major components of the SOA environment 

 impact of specific technologies and standards used in the environment 

 guidelines for service implementation 

 state of target environment 

 interaction patterns between services and the environment 

 QoS expectations and execution environment for services 

As we mentioned earlier, all SMART activities are iterative. Information gathered during this ac-

tivity may also trigger additional information that needs to be gathered about components. For 

example, if the target SOA environment contains a component for information security manage-

ment, it is important to identify whether any of the components targeted for migration will need to 

make use of this security component. The specific options for integration with the security com-

ponents are determined during the Analyze the Gap activity. 

A Notional Service-Oriented System Architecture artifact, similar to that in Figure 1 on page 2, is 

created during this activity to illustrate the components of the system—service consumers, infra-

structure, services, legacy components—and how they interact with each other. 

4.2.6 Analyze the Gap 

This activity provides preliminary estimates of the effort, risk, and cost to convert the candidate 

legacy components into services, given the candidate service requirements and target SOA cha-

racteristics. The discussion of the changes that are necessary for each component is used as the 

input to calculate these preliminary estimates. 

In some cases, additional analysis methods may be needed, such as evaluation of code quality 

using code analysis tools or architecture reconstruction. For example, if the dependencies between 



 

 SOFTWARE ENGINEERING INSTITUTE | 11 

components of the system are not well known and the technical personnel is not capable of pro-

viding details of the changes or the magnitude of the changes, an architectural reconstruction 

could provide a set of views to understand these dependencies [Kazman 2002, O’Brien 2002]. 

The Service-Component Alternatives artifact is created during this activity to illustrate the poten-

tial sources for functionality to satisfy service requirements. (See Table 1.) 

4.2.7 Develop Strategy 

The information gathered in the previous activities generates migration issues that need to be ad-

dressed by the migration strategy. This information also provides the basis for estimates of cost, 

effort, and risk of migration, which will place constraints on the migration strategy. This activity 

develops a migration strategy that may include 

 feasibility, risk, and options for proceeding with the migration effort 

 identification of a pilot project to migrate a simple service (or set of services) that has high 

visibility and low risk, especially if the organization is new to SOA. This allows the organi-

zation to become familiar with the technologies, gain organizational buy-in, and start defin-

ing processes for later service development. 

 order in which to create additional services 

 guidelines for identification and creation of services. This includes 

 any specific guidelines to address particular migration issues—design patterns, specific 

technologies, infrastructure usage 

 service reference architectures. If there are unknowns about the infrastructure, data 

sources, system interfaces, and any other element that the services will interact with or if 

there is reason to believe that these elements are unstable or in constant change, it is im-

portant to architect the service in such a way that they are isolated from these changes. 

An example of a service reference architecture is presented in the case study in Section 

5. 

 options for the source of service code—legacy system, commercial products, or external 

services 

 mechanisms for providing service functionality—wrapping, rewriting, extraction, or new 

 specific migration paths to follow. A migration strategy may present a set of options for mi-

gration. For example, an approach may be to wrap the existing legacy code initially and re-

write the components in a different language in the future. 

 needs for additional information or training. Any gaps identified by the migration issues 

need to be addressed—through, for instance, technology evaluation, market research, train-

ing, or workshops 



12 | CMU/SEI-2008-TN-008 

Table 1: SMART Activities and Artifacts 

 

CreateMigration Strategy 

UpdateCreate
Service-Component 

Alternatives 

UpdateCreate
Notional SOA-Based 

System Architecture

UpdateCreateComponent Table

UpdateCreateService Table 

UpdateCreate
Business Process-Service 

Mapping

UpdateCreateMigration Issues List 

UpdateCreateCharacteristics List 

UpdateCreateStakeholder List 

Develop 

Migration 

Strategy 

Analyze the Gap 

Describe Target 

SOA 

Environment 

Describe Existing 

Capability 

Define Candidate 

Services

Establish 

Migration 

Context

CreateMigration Strategy 

UpdateCreate
Service-Component 

Alternatives 

UpdateCreate
Notional SOA-Based 

System Architecture

UpdateCreateComponent Table

UpdateCreateService Table 

UpdateCreate
Business Process-Service 

Mapping

UpdateCreateMigration Issues List 

UpdateCreateCharacteristics List 

UpdateCreateStakeholder List 

Develop 

Migration 

Strategy 

Analyze the Gap 

Describe Target 

SOA 

Environment 

Describe Existing 

Capability 

Define Candidate 

Services

Establish 

Migration 

Context



 

 SOFTWARE ENGINEERING INSTITUTE | 13 

5 Application of SMART to a Mission Status System 

The following is a summary of the application of SMART to a DoD Mission Status System. Each 

sub-section corresponds to a step in the SMART process.  

5.1 ESTABLISH CONTEXT 

A DoD organization has been tasked with developing services that can be used by mission plan-

ning and execution applications. As a transition organization, its goal is twofold: (1) develop the 

services and (2) become knowledgeable about migrating legacy systems to services in order to 

assist other organizations in doing so. The organization is engaged in several migration efforts but 

has not used a systematic approach for making decisions. 

The Mission Status System (MSS) targeted for migration compares a planned mission against a 

current state to determine if corrective actions should be taken. The system obtains plan data and 

situational awareness data from a Planning System (PS). MSS and PS run on the same machine, 

and there is tight coupling between the two systems. Both MSS and PS are in the final stages of 

development and have not been deployed. A long-term business goal is the full migration of MSS 

to services. The technical driver is to make the developed services available to all planning and 

execution systems. 

A standard web services environment has been selected as the target SOA environment for this 

pilot. The future environment for the developed services will most likely be a DoD proprietary 

SOA infrastructure. However, by performing and executing this pilot, the organization will gain 

valuable insights on the migration process. Also, the overall process, as well as at least a signifi-

cant part of the analysis, can be carried forward. The goal for the pilot is to demonstrate, within 

four months, the feasibility of one exposing MSS component as a service to be used by one mis-

sion planning and execution system. The long-term goal is to migrate the full system to services in 

two years. Funding has been allocated for the full effort. 

Representatives from MSS and from a mission planning and execution system that is a potential 

service consumer identified the following set of candidate services: 

 AvailablePlans: provides a list of available plans that are being reasoned about 

 TrackedTasksPerPlan: provides a list of tasks that are being tracked for a certain plan 

 TaskStatus: provides the status for a given task in a given plan 

 SetTaskAlert: alerts when a given task in a given plan satisfies a certain condition 

These services were selected because their functionality is generic enough that it can be used by 

other known mission planning and execution systems. 

Migration issues identified at this point are as follows: 

 The short-term and long-term goals for the migration are different. The implication of this 

difference is that the work to accomplish the short-term goal might have to be redone to ac-

complish the long-term goal. 

 The system is currently a single-user system. When capabilities are migrated to services, it 

will have to support multiple users.  



14 | CMU/SEI-2008-TN-008 

 The system currently monitors a single plan. When capabilities are turned into services, it 

will have to support monitoring of multiple plans.  

5.2 MIGRATION FEASIBILITY DECISION POINT 

Based on the data obtained at this stage, a decision was made to continue with the rest of the 

SMART analysis. This was based on the following factors: 

 the availability of stakeholders from the service provider and a service consumer  

 a good understanding of MSS  

 the request-response nature of the identified services  

 a reasonable initial mapping of services to components 

5.3 DEFINE CANDIDATE SERVICES 

The list of services identified in the previous step was considered reasonable for analysis. Inputs 

and outputs were next identified in detail for each of these services.  

Migration issues identified during this activity are as follows: 

 The SetTaskAlert service implementation will require that (1) the alert is set up to respond to 

certain conditions and (2) the service consumer has to be notified via an event that the condi-

tion has been met. By contrast, service-oriented systems have typically been of a request-

response nature, in which a service consumer sends a request for a task to be performed and 

a service provider performs the task and returns a response. The communication protocol be-

tween consumer and provider handles the exchange, and there are typically no special re-

quirements on the consumer or the infrastructure other than support for the protocol. The 

handling of events in service-oriented environments has been recently introduced in SOA 2.0
 

[Violino 2007]. The implementation of SetTaskAlert will require that either the service pro-

vider or the infrastructure store the address of the service consumer so that it knows whom to 

notify and that the service consumer be set up to receive alerts.  

 It is unclear how the alert mechanism is going to be implemented. The SOA infrastructure 

needs to call back the service consumer. The service consumer might have to set up a web 

service, which means it could not be a thin client (i.e., accessing the service application via a 

simple web browser without having to install a web server). There might also be firewall is-

sues. 

 The complexity of alert conditions is high. In MSS, this is currently done through the user 

interface. The service consumer interface will have to replicate this complexity, or condi-

tions will have to be simplified or limited. 

5.4 DESCRIBE EXISTING CAPABILITY 

The following characteristics of the MSS were provided: 

 MSS is in a demonstration state, rather than a production environment. There have been sev-

eral prototypes and experiments to demonstrate its capabilities.  

 MSS is written in C++, C#, and Managed C++ in a Visual Studio 2005 development envi-

ronment. It runs on a Windows XP platform. The size of the full system is approximately 

13,000 lines of code. The amount of code considered for migration depends on the scope of 



 

 SOFTWARE ENGINEERING INSTITUTE | 15 

the migration effort, although most of the code is being targeted for migration in the future. 

Code documentation was rated between fair and good by its developers. 

 Several architecture views were presented that were useful for understanding the system: 

high-level context diagram, component-and-connector view, module view, and runtime 

view.  

 As indicated previously, MSS relies on PS for plan data and situational awareness data. PS 

provides an interface for data exchange using XML. This is an advantage for future integra-

tion with PS when it becomes a service. However, there is a chance that the data models may 

not match. 

Migration issues identified in this phase are as follows: 

 Documentation for most of the analyzed classes was determined to be fair. As a result, do-

cumentation could be an issue if the system’s original developers do not perform the migra-

tion. 

 There is currently heavy communication between MSS and PS. It is unclear how perfor-

mance will be affected when this communication takes place using services (recall that the 

two systems currently reside on the same machine). 

 The task alert functionality is not currently implemented in MSS, and there are unknowns 

about the specifics of the implementation. 

5.5 DESCRIBE TARGET SOA ENVIRONMENT 

As mentioned earlier, the target SOA environment for the migration is a standard web services 

one. It was decided to use an existing setup based on Microsoft IIS and ASP.NET.  

As also mentioned earlier, the SetTaskAlert service has two parts. The first part sets the alert con-

ditions and the second part sends the alert to the service consumer when those conditions are met. 

Sending an alert requires knowledge of the address of the SetTaskAlert service consumer. It was 

decided to use an existing publish-subscribe component that currently runs on another of the or-

ganization’s servers. It is a simple component where users subscribe to one or more pre-defined 

events and are notified when one of those events occurs. This component requires subscribers to 

be set up as web servers. The notional high-level architecture for the service-oriented system that 

is in the scope of this migration effort is presented in Figure 3. 

Additional migration issues identified during this activity are as follows: 

 It is not known whether the publish-subscribe component will allow someone to subscribe on 

behalf of a third party. If ―subscription by proxy‖ is not allowed, the service consumer will 

have to be aware of its dependency on the publish-subscribe component in order to receive 

alerts. The ideal situation would be for the SetTaskAlert service code to subscribe on behalf 

of the service consumer, so that the service consumer is not affected if the alert mechanism 

changes. 

 The service consumer would have to be set up as a web server that is configured to accept 

incoming messages from the publish-subscribe component. This configuration is a security 

concern, potentially. 

 



16 | CMU/SEI-2008-TN-008 

 

Figure 3: Notional Architecture for the Service-Oriented System Based on MSS  

5.6 ANALYZE THE GAP 

During this activity, the developers described the details of the changes that would have to be 

made to the code given the service requirements, the service inputs and outputs, and the characte-

ristics and components of the target SOA environment. The developers were then asked to pro-

vide an estimate of the effort required to make these changes. No code analysis or architecture 

reconstruction was necessary because (1) the original developers were involved in the process, (2) 

their input was credible, and (3) the architecture documentation of and knowledge about the sys-

tem were acceptable.  

  



 

 SOFTWARE ENGINEERING INSTITUTE | 17 

5.7 DEVELOP STRATEGY 

Given the identified migration issues and preliminary estimates of cost and risk, the following 

migration strategy was developed. 

1. Define scope of initial migration for a short-term feasibility demonstration. During the 

Analyze the Gap activity with developers of the legacy and the service consumer systems, the 

SMART team and the stakeholders discussed options for short-term feasibility experiments, 

as shown in Table 2.  

 Table 2: Options for Short-Term Feasibility Demonstration 

Migration Option Effort (person-weeks) 

Implement SetTaskAlert service using a Query Language package developed for 

use in another system (Option 2) 

24 

Implement SetTaskAlert service using functionality in the legacy system (Option 1) 20 

Do not implement the SetTaskAlert service 11 

Do not implement the SetTaskAlert service and do not separate out from PS 7 

The effort required has to be analyzed against the goals for the demonstration, and a decision 

about separating the service from PS has to be made. If the decision is not to separate the ser-

vice from PS for this short-term feasibility demonstration, the group recommends it be done 

as part of a subsequent iteration in preparation for the long-term goal for MSS. The imple-

mentation of SetTaskAlert should meet the long-term goals for MSS and have the least im-

pact on service consumers in terms of usability (from a service interface perspective) and per-

formance. 

2. Define the scope of subsequent iterations. A suggested set of iterations, according to input 

from the developers and other stakeholders as well as from recorded migration issues, is pre-

sented in Table 3. Subsequent iterations will depend on additional services to be created from 

MSS as well as progress made in the migration of PS to services. 

 Table 3: Suggested Migration Iterations 

Iteration Goal Effort (person-weeks) 

1 Implement AvailablePlans, TrackedTasksPerPlan, and Task Status 7 

2 Separate MSS from PS 4 

3 Implement SetTaskAlert (New code is needed for task alert.) Option 1: 9 

Option 2: 13 

4 Add support for multiple users and multiple plans TBD 

5 Migrate to the DoD proprietary SOA environment  TBD 

 

  



18 | CMU/SEI-2008-TN-008 

3. Finalize service inputs and outputs. The service inputs and outputs in the Service Table 

need to be concretely defined in WSDL documents, including the structure for conditions in 

SetTaskAlert that is still to be defined (for this or a future iteration, depending on scope selec-

tion). 

4. Gather information about the publish-subscribe component to be used as the mechan-

ism for alert capability. For the current or a future iteration, additional information about the 

publish-subscribe component to be used should be gathered to answer these questions: 

 Is it possible for the SetTaskAlert component to subscribe on behalf of the service con-

sumer? If it is, the internet protocol (IP) address for the service consumer has to be 

passed as an input. If it is not, the service consumer has to be aware that it needs to sub-

scribe to the publish-subscribe component. 

 What type of alert should SetTaskAlert or the service consumer subscribe to? 

 What are the requirements on the service consumer side to receive alerts? 

5. Create a reference architecture for the services. A reference architecture to be followed by 

all services would provide a framework for service development, the reusability of common 

service operations, and, if done properly, the isolation of service code from changes due to the 

differences between short-term and long-term goals for MSS. An example of a service refer-

ence architecture is shown in Figure 4. 

 

 

 Figure 4: Service Reference Architecture for MSS Services 

 Service Interface Layer: performs all transformations between messages from the ser-

vice consumers and the MSS code, as well as input validation. This layer would isolate 

from changes in the evolution of the messages as the target SOA environment changes. 

 Service Code Layer: contains all service functionality code, migrated or new. 

 Data Access Layer: performs data access to all external sources. Initially, situational 

awareness data and plan data are external sources (even if currently done through a lo-

cal application programming interface [API]). As PS migrates to a service, this layer 

would isolate existing code from incompatibilities between the current and future data 

structures.  

Service Interface Layer

Performs transformations between messages from 

service consumers and service code

Service Code Layer

Contains existing service code plus new code developed 

to meet service requirements

Data Access Layer

Contains code to access external 

data sources

Alert Setup Layer

Contains code to 

set up alerts



 

 SOFTWARE ENGINEERING INSTITUTE | 19 

 Alert Setup Layer: contains all code to setup the callback mechanism to the service 

consumer. This layer isolates code from changes if the selected publish-subscribe com-

ponent is not a part of the future SOA infrastructure. 

The implementation of the service reference architecture can be created as a project template 

in the selected development environment and used by all service development efforts. 

6. Adjust Estimates. The estimates provided in the Component Table are based on a prelimi-

nary understanding of the inputs and outputs, as well as a high-level look at the code. After 

scope, inputs, outputs, and requirements are refined, the estimates will need to be adjusted.  

7. Create MSS services using the service reference architecture. After defining the scope for 

the initial and subsequent iterations, migration and development should start as soon as possi-

ble to take advantage of MSS developer knowledge. In parallel with the migration and devel-

opment, the service reference architecture should be implemented and refined.  

8. Document lessons learned. Lessons learned in the process should be documented and pub-

lished to support the goal of transition of SOA migration knowledge to other areas within the 

organization. 



20 | CMU/SEI-2008-TN-008 

6 Conclusions and Next Steps 

SOA offers significant potential for leveraging investments in legacy systems by providing a 

modern interface to existing capabilities, as well as exposing legacy functionality to a greater 

number of users. The SOA approach to systems development accomplishes this by promoting the 

assembly of applications from existing services, platform and language independence, reuse of 

services through loose coupling, and easy service upgrade due to separation of service interface 

from implementation. 

There is a need for detailed analysis to determine the feasibility of exposing legacy functionality 

as services. One reason is that a service-oriented system consists of (1) services, (2) consumers 

that discover and use services, and (3) an SOA infrastructure that connects consumers to services. 

An end-to-end engineering approach for SOA requires addressing the unique challenges, risks, 

and technical issues of these three different development perspectives. The service provider that is 

designing reusable services, in particular, requires a different approach, skill set, and mindset than 

used in traditional development. In addition, there will be a bigger stakeholder community be-

cause services are typically reused at organization and sub-organization levels. Migration chal-

lenges may cause the cost of exposing legacy system functionality as services to be higher than 

actually replacing the system with a new service-oriented system. As a result, the detailed analysis 

has to include the identification of needs of the target SOA environment, a clear distinction be-

tween the needs that can be satisfied by the legacy system and those that cannot be satisfied, and a 

systematic analysis of changes that need to be made to fit into the target SOA environment. 

Clearly, migration to SOA environments encompasses some complex engineering tasks. It re-

quires an understanding of the role of SOA, potential pitfalls, and the unique challenges of migra-

tion within an SOA context. The type of data provided by the SMART approach enables an or-

ganization to make the initial decisions required for migration to a service-oriented environment. 

SMART analyzes the viability of reusing legacy components as the basis for services by answer-

ing these questions: 

 Does it make sense to migrate the legacy system to services? 

 What services does it make sense to develop? 

 What components can be mined to derive these services? 

 What changes need to be made to the components to accomplish the migration? 

 What migration strategies are most appropriate? 

 What are the preliminary estimates of cost and risk? 

In just over three years, the SMART approach has been applied in four different organizations 

across six projects. As a result of these experiences, we have begun to identify variations on the 

SMART process to help organizations that are dealing with different sets of issues. The different 

variations of SMART are being built as part of a SMART Family, as shown in Figure 5. The 

members of the SMART Family follow the same process described in this report, but the empha-

sis is on certain activities in the process where the SMIG has been enhanced to go into more detail 

in specific areas. 



 

 SOFTWARE ENGINEERING INSTITUTE | 21 

 

Figure 5: SMART Family  

 SMART-MP (Migration Pilot) is the SMART process that was described in this report. The 

goal of SMART-MP is to identify a pilot project that will help shape a migration strategy for 

an organization, along with an understanding of cost and risk involved. 

 SMART-SMF (Service Migration Feasibility) is tailored for organizations that are new to 

SOA and are probably not ready for a pilot project. The goal of SMART-SMF is to deter-

mine if it makes sense for an organization to adopt SOA, to understand its migration options, 

and to start putting together a migration strategy that may include the use of other members 

of the SMART Family. 

 SMART-ESP (Enterprise Service Portfolio) enables organizations to scan across all of their 

legacy systems to identify potential services. The goal of SMART-ESP is the creation of an 

enterprise service portfolio and the mapping of these services to legacy systems. 

 SMART-ENV (Environment) is aimed at organizations that have identified a target SOA 

environment (or have been mandated to use a particular SOA environment) but do not un-

derstand the implications of migrating to this environment. The goal for SMART-ENV is the 

characterization of the target SOA environment, including preliminary costs and risks of mi-

grating to that environment.  

 SMART-SYS (System) is targeted at organizations tasked with the development of a com-

plete service-oriented system that potentially includes the identification and creation of ser-

vices, the development or acquisition of an SOA infrastructure, and the development of ser-

vice consumers. The goal in SMART-SYS is a superset of those of the previous SMART 

Family members. 

The SMART Family will be outlined more completely in a future report. 

 

SMART

SMART-SMF

Service Migration Feasibility

Helps an organization establish 

the feasibility of migration to an 

SOA environment  and creates a 

high-level migration strategy if it is 

feasible

SMART-MP

Migration Pilot

Helps an organization select a 

pilot project that includes a 

migration strategy with 

understanding of costs and risks 

involved

SMART-ESP

Enterprise Service Portfolio

Helps an organization select and 

create services from its systems 

portfolio

SMART-ENV

SOA Environment

Helps an organization 

understand a target SOA 

environment in detail, including 

associated costs and risks of 

migrating to that environment

SMART-SYS

SOA-Based Systems Development

Helps an organization understand a 

complete SOA-based system—services, 

consumers, environment—including risk 

and cost data 



22 | CMU/SEI-2008-TN-008 

Appendix A The Service Migration Interview Guide (SMIG) 

The SMIG is an instrument that focuses the discussions with stakeholders and developers in the 

first four activities of the SMART process: 

 Establish Context  

 Define Candidate Services  

 Describe Existing Capabilities 

 Describe Target SOA Environment 

Answers to SMIG questions help determine the level of effort required to migrate legacy code 

into services. The use of this instrument assures broad coverage and consistent analysis of diffi-

culty, risk, and cost issues. 

A1. ESTABLISH CONTEXT 

The organization is asked to present 

 Budget and schedule for the migration effort 

 Business and technical drivers for the migration effort 

 Characteristics of the organization that is performing the migration (if different) 

 Characteristics of the organization that is sponsoring the migration effort 

 Characteristics of the organization that owns the legacy system (if different) 

 Characteristics of service consumers 

 High-level architecture of the system 

 High-level description of the system (functionality, history, users) 

 High-level description of the target SOA environment 

 List of candidate services (if available) 

 Main business processes or mission threads that will be supported by these services (if avail-

able) 

 Portions of the legacy system that contain the capabilities to support the candidate services 

(if available) 

Discussion topics and questions that explore these areas are shown in the following tables. 

  



 

 SOFTWARE ENGINEERING INSTITUTE | 23 

Table 4: Business and Technical Context 

Discussion Topic Questions 

Goal and Expectations of 

Migration 

 What are the business drivers for the migration effort?  

 Have any studies been conducted to verify these business drivers? 

 What are the technical drivers for the migration effort?  

 Are the technical drivers compatible with the business drivers? 

 What are the short-term goals of the migration effort? 

 What are the long-term goals of the migration effort? 

 Are the short-term and long-term goals compatible? 

 What are perceived advantages of migrating legacy components to services?  

 What are perceived disadvantages of migrating legacy components to servic-

es?  

Budget and Schedule  What is the timeframe for the migration? 

 Who is paying for the effort? 

 What is the budget for the migration? 

Other Migration Efforts  Have any other migration efforts been attempted? 

 What was the outcome?  

 Why did it fail or succeed? 

 What are the lessons learned? 

Table 5: Stakeholders 

Discussion Topic Questions 

Legacy System End Users  Who are the end users of the legacy system? 

 Will legacy system end users be available during the migration process? 

Legacy System Owners  Who owns the legacy system?  

 If there is more than one owner, are these separate organizations? 

 Will legacy system owners be available during the migration process? 

Legacy System Develop-

ers and Maintainers 

 Who is the developer for the legacy system? 

 Are developers available to support the migration process? 

 Is the maintenance group separate from the development group? 

 If so, are maintainers available to support the migration process? 

Organization Performing 

the Migration 

 Are current developers or maintainers going to be performing the migration? 

 If not, what organization will perform the migration? 

 What is the process for bringing them up to speed on the legacy system? 

 Will this organization be available during the migration planning? 

Target SOA Environment 

Owners 

 Is the target SOA environment owned and maintained by a separate organiza-

tion? 

 If so, will representatives be available to support the migration process? 

 

  



24 | CMU/SEI-2008-TN-008 

Table 6: Legacy System and Target SOA Environment 

Discussion Topic Questions 

High-Level Under-

standing of Legacy 

System  

 What is the main functionality provided by the legacy system? 

 What is the history of the legacy system? 

 What is the high-level architecture of the system? 

 What portion of the system is envisioned for migration? 

 What is the current user interface to the legacy system?  

 How complex is the user interface? 

 What is the plan with respect to the legacy system(s)? 

High-Level Under-

standing of Target 

SOA Environment 

 What are the main components in the target SOA environment? 

 Is it a standard or proprietary environment? 

 Is this the organization’s first attempt to deploy services in this environment? 

If the organization provides a list of candidate services, it is necessary to assess the process used 

to select them. An ideal process is to (1) identify business goals, (2) determine key business 

processes or mission threads that support these goals and can use functionality from the legacy 

system, and (3) find common steps/tasks in these processes or threads, and (4) select a number of 

the steps as candidate services. If the organization has not identified candidate services, the goal is 

to go through the process and identify some candidate services. 

Table 7: Candidate Service Identification 

Discussion Topic Questions 

Potential Services  Have potential services been identified?  

 If so, what was the process?  

 Is the list of services available?  

Potential Service 

Consumers 

 Who are the potential service consumers? 

 Have the potential service consumers provided both the business and the quality 

attribute requirements? In what form? 

 Are the identified service consumers internal or external to the organization? 

Business Goals and 

Processes Supported 

by Potential Services 

 What are the organization’s main business goals to be supported by an SOA strat-

egy? 

 What are the main business processes that support these goals? 

 What are common steps/tasks between these business processes? 

Initial Mapping Be-

tween Potential Ser-

vices and Legacy 

Components 

 Has a mapping between services and components been done? 

 If so, is this mapping available? 

 What legacy components that provide the functionality are required by the servic-

es? 

 How different are the service requirements from the existing capabilities? 

 If there is a difference, how negotiable are the requirements? 

  



 

 SOFTWARE ENGINEERING INSTITUTE | 25 

A2. PREPARATION FOR NEXT STEPS 

Once the migration is considered initially feasible, the next step is to gather additional detail on 

candidate services, the legacy system(s), and the target SOA environment. Stakeholders are asked 

to prepare the following: 

 Detailed presentation(s) of requirements for services from real or potential service consum-

ers 

 Detailed presentation(s) of the legacy system, including all architectural views available 

 Detailed presentation(s) of the target SOA environment, including technologies and any con-

straints the environment might place on service consumers and providers 

 Legacy code for review on a laptop; LOC (lines of code) data for every legacy component 

A3. DEFINE CANDIDATE SERVICES 

This activity selects a small number of services, usually three or four, from the initial list of can-

didate services. The goal is to fully specify inputs and outputs for these candidate services. 

Table 8: Define Candidate Services 

Discussion Topic Questions 

Service Consumers  What specific applications or systems will be using these services? 

 What is the expected service usage? 

 What is the process for obtaining requirements from service consumers?  

 What are specific quality attribute requirements, such as response time or se-

curity? 

 Will formal/informal service level agreements need to be defined? 

Refined List of Candidate 

Services 

 What 3-4 services are the better match for the goals and expectations of the 

migration effort? 

 What are the services with greater potential for use by service consumers? 

 What are services with a better match to existing capabilities? 

 What are the interfaces for these services in terms of inputs and outputs? 

Mapping to Legacy  

Components 

 For each service, what are the specific legacy components that contain the 

functionality required by the services? 

 What new code will have to be written to fully satisfy service requirements? 

Interface Negotiation  What is the procedure for negotiating service interfaces with potential service 

consumers?  

 How are conflicts to be solved?  

Communities of Interest 
 Is there a Community of Interest within the domain represented by the service 

capabilities?  

 Are communities of interest internal or external to the organization?  

  



26 | CMU/SEI-2008-TN-008 

A4. DESCRIBE EXISTING CAPABILITIES 

In this activity, the SMART team and the client obtain descriptive data about the legacy system 

and its components. The goal is to capture basic characteristics of the legacy system, information 

about the architecture of the legacy system, and code characteristics that may affect the migration 

to determine whether it will be possible to use program-understanding tools for code analysis or 

architecture reconstruction, if necessary.  

Table 9: Legacy System Characteristics 

Discussion Topic Questions 

Functionality  What is the main functionality provided by the system? 

History  What is the history of the system?  

 How old is it?  

 How many versions and releases have there been? 

State  Is the system a proof of concept, prototype, under development, in testing, or a 

fielded system?  

 How stable is the system in general?  

System  

Documentation 

 What system documentation is available? 

 How old is the documentation?  

 What part of the system is not documented or has outdated documentation?  

Size  What is the size of the system?  

 What is included in this number?  

 What metrics are used in the size estimate for the system?  

Platform  What is the execution platform?  

 Is it a distributed system? If so, have all system elements been included in the mi-

gration analysis? 

Development  

Environment 

 What is the development environment? 

Interfaces with Other 

Systems 

 Does the system have interfaces to other systems?  

 Are these interfaces part of the code targeted for migration?  

 Are interfacing systems aware of the migration effort? 

System Users  Is it a single-user or multi-user system?  

 What are the potential locking, persistence, or transaction problems if accessed by 

multiple users when migrated to services?  

 

  



 

 SOFTWARE ENGINEERING INSTITUTE | 27 

Table 10: System Architecture 

Discussion Topic Questions 

Architecture  

Documentation 

 What architecture views are available?  

 How old is the architecture documentation?  

Commercial  

Components 

 Are there dependencies on commercial components?  

 Is there support available for all commercial components?  

 How will the commercial components adapt to the services environment? 

Module View  What are the major modules of the system? 

 What are the dependencies between modules? 

 Does the code structure mimic this modular view? 

Deployment View  What is the deployment view of the system?  

 Are there dependencies on specific hardware or network topology?  

Runtime View  What is the runtime view of the system? 

 How is concurrency handled? 

 How are hard deadlines handled? 

Separation of  

Concerns 

 Is user interface code separate from the business logic code?  

 Is business logic code separate from middleware code? 

 Is data access logic separate from the rest of the code? 

 How tight is the coupling between these elements in the code?  

 What are other portions of the code where separation of concerns is a problem? 

Design Paradigms  Are there any design paradigms or patterns implemented in the system?  

 Are there any known violations to these paradigms due to tradeoffs with perfor-

mance, for example? 

Quality Attributes  What are the key quality attributes built into the architecture of the system?  

 Are there any new quality attributes that are expected of the system when the ser-

vices are in place?  

Table 11: Code Characteristics 

Discussion Topic Questions 

Programming  

Language 

 What programming languages were used in the development of the system? 

 Do these languages have support for the technologies used in the target environ-

ment? 

Documentation  What code documentation is available?  

 Can the documentation be extracted using a tool such as Doxygen or JavaDoc? 

Coding Standards  What coding standards are followed?  

 Is the coding standards document available? 

Input Checking  Are there complete precondition and constraint checking on inputs? 

Code Organization  What is the code structure? 

 What is the mapping between the code structure and the module view of the sys-

tem? 

  



28 | CMU/SEI-2008-TN-008 

A5. DESCRIBE TARGET SOA ENVIRONMENT 

This activity gathers information about the target SOA to support decisions about which services 

may be appropriate and how they will interact with the target SOA environment. The end goal is 

to produce a high-level notional architecture of the target service-oriented system. 

Target SOA Environment Characteristics 

The goal of this section is to identify and gather sufficient detail about the target SOA environ-

ment to know how services will interact with the architecture and identify constraints or risks that 

may affect the migration effort. Potential conflicts between the legacy system components and the 

target architecture are also identified. 

Table 12: Target SOA Environment Characteristics 

Discussion Topic Questions 

Status  What is the status of the target SOA environment? 

 What builds are available? Are these the latest builds? 

 What is the release schedule? Is it aligned with the migration schedule? 

Communication with 

Target SOA Environ-

ment Organization 

 If target SOA environment belongs to an external organization, what current com-

munication and collaboration exists? 

Infrastructure  

Components 

 What are the major components of the SOA infrastructure? 

 Which components are commercial and which will be developed internally? 

 Is documentation available? 

 How well specified is the infrastructure? 

Infrastructure  

Services 

 Does the target SOA environment provide infrastructure services (i.e., communica-

tion, discovery, security, data storage)? 

 Is there redundancy between code internal to the services and the infrastructure 

services? 

 Would it be feasible to replace internal calls with calls to the infrastructure services in 

the legacy code? 

Communication  

Model 

 What is the communication model(s) provided by the target SOA environment?  

 Are there available libraries and tools in the legacy platform to support this commu-

nication model?  

Standards and  

Mandates 

 What are the standards or mandates that have to be followed? 

 What is necessary to bring the legacy code in compliance with relevant standards 

and mandates? 

SOA Environment 

Constraints 

 What constraints does the target SOA environment impose on services?  

 What are potential problems caused by these constraints (i.e., direct calls to the 

operating system)? 

 Are there constraints on the use of commercial products?  

 If there are problems, are there potential replacements? 

 What are constraints on the granularity of the services due to, for example, deploy-

ment on limited memory devices?  

 What are potential problems caused by this constraint (i.e., separating functionality 

into services)? 



 

 SOFTWARE ENGINEERING INSTITUTE | 29 

 

Table 12: Target SOA Environment Characteristics (contd.) 

Discussion Topic Questions 

Architectural  

Mismatch 

 Does the legacy system have any behavior that would be incompatible with the 

target SOA environment, such as synchronous behavior, batch operation, or highly 

transactional activity? 

 What effort is required to eliminate or modify this behavior? 

Data Models  Does the target SOA environment impose a shared data model or a data infrastruc-

ture service?  

 What is the required effort to translate the legacy data model to the imposed data 

model?  

 What is the negotiation process for incompatibilities? 

Interfaces to Other 

Systems or Services 

 Does the target SOA environment provide interfaces to other systems or services?  

 Is there functionality in the legacy system that could be replaced by functionality in 

these systems or services?  

 What is necessary to use these systems or services or to prepare the system for 

future use of these systems or services? 

Service Description 

and Discovery 

 What are the requirements for description of services (e.g., WSDL for web servic-

es)?  

 What are the requirements with respect to making service descriptions available to 

potential consumers (e.g., UDDI, NCES directory service, appropriate agreements, 

other registries)? 

Ontologies  Is there a requirement for an ontology to be used in the description of services (e.g., 

OWL Web Ontology Language or other ontologies within the DoD Metadata Reposi-

tory and Clearinghouse)?  

 How mature is the ontology?  

 Is it widely used?  

 Is a proprietary ontology being developed in-house?  

 Are there other ontologies in the same domain? 

Quality of Service 

(QoS) 

 Is it required to document QoS expectations and promises, preconditions, and other 

necessary characteristics of a service not covered by the service description specifi-

cation (e.g., performance, reliability, error rate)?  

 What is the maturity of the specifications in this area? 

Quality of Protection 

(QoP) (Security) 

 Is it required to document QoP expectations and promises, preconditions, and other 

necessary characteristics of a service not covered by the service description specifi-

cation (i.e., authentication mechanism, security classification, certification and ac-

creditation status)?  

 What is the maturity of the specifications in this area? 

Service Execution 

Platform 

 Once developed, where will services execute?  

 Will they be hosted or will they be delivered to be deployed as needed? 

Service Management  What startup and initialization code is required for the services?  

 Is remote administration for monitoring and upgrade required?  

 

  



30 | CMU/SEI-2008-TN-008 

Support 

This goal is to collect information and generate awareness of the effort that is required once the 

services are deployed for use. 

Table 13: Support 

Discussion Topic Questions 

Testing  Is there a requirement to provide test scripts and/or test cases for the services and 

make them publicly available?  

 Are there mandates regarding testing and certification for services (i.e., Global Informa-

tion Grid [GIG]−Network-Centric Warfare [NCW] requirements)?  

 Is there a requirement to create test instances for services?  

Service Consumer 

Setup and Installa-

tion 

 Is there a requirement to develop setup and installation procedures for potential service 

consumers?  

 Will consumers require configuration files or other mechanisms for setup?  

Problem Reporting 

and Feedback 

 Is there a requirement to establish problem reporting and feedback mechanisms for 

service consumers?  

Updates and Up-

grades 

 How will service consumers be informed of potential changes in service interfaces and 

down time due to upgrades or problems? 

User Communities  Is there a user community for service consumers (e.g., demonstrations, tutorials, sup-

port for organizations attempting to use the services)? 

 

 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 31 

Appendix B - The SMART Tool 

The SMART Tool 

 automates the SMIG data collection instrument  

 relates questions to answers to potential risks and migration issues, producing a draft migra-

tion strategy and migration issues list—this data model is the ―heart‖ of the tool 

 consolidates data from multiple engagements for future analysis 

B1. SMART TOOL COMPONENTS 

The Tool was developed in Java using the Eclipse Integrated Development Environment (IDE). 

Multiple free and open source tools and libraries were used for encryption, reporting, advanced 

user inter-face capabilities, communication, and data management. The Tool has two major com-

ponents—the SMART Client and the SMART Server.  

B1.1. SMART Client  

The SMART Client is a Java application built using the Eclipse Rich Client Platform (RCP). This 

application is intended to run on the laptop computer in offline mode during the engagement. The 

SMART Client guides the facilitator through the engagement by  

 presenting the SMIG to the facilitator for reference during the engagement. For each ques-

tion, there are potential answers, space for comments, and a pre-determined next question to 

guide the discussions. 

 providing means to tag questions to indicate elements of importance during the engagement, 

such as the need to revisit any question, potential characteristics for the Component Table or 

Service Table, major areas of risk, and any other custom tags defined for the engagement. 

 calculating the status of the engagement constantly, based on the number of questions that 

have been answered in each category 

 identifying and showing risks, as questions and answers. A list of overall risks is shown in 

the bottom portion of the screen for reference. 

 consolidating data on the SMART Server, when there are multiple facilitators in an engage-

ment. The consolidated data can then be downloaded for a group view. 

The SMART Client also has reporting capabilities, as will be seen in Section B2. 

A screenshot from the client is shown in Figure 6. A MySQL database is used to store engage-

ment data, which is encrypted to assure confidentiality. A password is set during installation of 

the Client, so that it can only be executed by authorized users. The application is the only point of 

access to the encrypted data.  



32 | CMU/SEI-2008-TN-008 

 

Figure 6: Screenshot of the SMART Client 

B1.2. SMART Server 

The SMART Server is a web application that runs on a central server of an organization that per-

forms SMART engagements. The SMART Server contains the following functionality: 

 SMIG Maintenance: Allows the maintenance of SMIG elements: categories, questions, po-

tential answers, risks, and mitigation strategies. 

 Engagement Setup: Engagements are set up on the server and then downloaded by SMART 

Clients. 

 User Management: This capability is for user and role management and assignment. Possible 

roles are facilitator, analyst, and administrator. 

 Export and Import SMIG: A SMIG can be exported by an instance of a SMART Server and 

imported by another instance of the Server. This functionality is useful to disseminate SMIG 

updates. 

 Reports: Reports are available for a version of the SMIG, a summary of an engagement, the 

final report for an engagement in Microsoft Word format, questions per tag per engagement, 

and on multiple engagements for analysis purposes.



 

 SOFTWARE ENGINEERING INSTITUTE | 33 

A screenshot from the server user interface is shown in Figure 7. A MySQL database is used to 

store SMIG history and data from multiple engagements. Data is not encrypted on the server be-

cause the assumption is that the server resides inside the organization’s firewall. 

 

Figure 7: Screenshot of the SMART Server 

B2. TOOL USAGE SCENARIO 

Assuming that both SMART Server and SMART Client are correctly installed, the following 

represents a typical usage scenario for a SMART engagement. 

1. An engagement is set up by the SMART Administrator on the SMART Server. A version of 

the SMIG is associated with the engagement.  

2. All SMART facilitators, using the SMART Client, connect to the SMART Server and down-

load the engagement data and corresponding SMIG. 

3. The SMART facilitators conduct the engagement using the SMART Client. 

4. At the end of the first day, interview data is uploaded to the SMART Server by each facilita-

tor using the SMART Client. 

5. Before the start of the next day, consolidated interview data is downloaded by each of the 

SMART facilitators using the SMART Client. 

6. On the SMART Client, one of the SMART facilitators produces a summary report of the 

engagement, indicating areas of disagreement between facilitators and tags these questions 

for later discussion with the team. 

7. The SMART facilitators continue the engagement using the SMART Client, with access to 

comments and answers from other facilitators that provide greater insight. 

8. At the end of the second day, interview data is uploaded again to the SMART Server by each 

SMART Client. (Steps 3 through 8 are repeated for each subsequent day of the engagement.) 

9. On return to the SMART organization after the stakeholder interviews have been completed, 

the SMART analyst (an SEI team member or someone trained by the SEI team) exports data 



34 | CMU/SEI-2008-TN-008 

produces the final report for the engagement for delivery to the client organization. This re-

port is generated in Microsoft Word format for easy editing.  



 

 SOFTWARE ENGINEERING INSTITUTE | 35 

References 

URLs are valid as of the publication date of this document. 

[Chung 2005] 
Chung, S., Young, P., & Nelson, J. ―Service-Oriented Software Reengineering: Bertie3 as 

Web Services.‖ Proceedings of the 2005 IEEE International Conference on Web Services 

(ICWS’05. Orlando, FL (USA), July 11−15, 2005. IEEE Computer Society, 2005. Digital Ob-

ject Identifier 10.1109/ICWS.2005.109. 

[Kazman 2002] 
Kazman, R., O'Brien, L., & Verhoef, C. Architecture Reconstruction Guidelines, 2nd Edition 

(CMU/SEI-2002-TR-034, ADA 421612). Software Engineering Institute, Carnegie Mellon 

University (2002). http://www.sei.cmu.edu/publications/documents/02.reports/02tr034.html 

[Lewis 2005] 
Lewis, G., Morris, E., O'Brien, L., Smith, D., & Wrage, L. SMART: The Service-Oriented 

Migration and Reuse Technique (CMU/SEI-2005-TN-029, ADA441900). Software Engineer-

ing Institute, Carnegie Mellon University (2005). 

http://www.sei.cmu.edu/publications/documents/05.reports/05tn029.html 

[Lewis 2006] 
Lewis, G., Morris, E., & Smith, D. ―Analyzing the Reuse Potential of Migrating Legacy 

Components to a Service-Oriented Architecture.‖ Proceedings of the 10
th
 European Confe-

rence on Software Maintenance and Reengineering (CSMR 2006). Bari, Italy, March, 22−24, 

2006. IEEE Computer Society, 2006. 

http://ieeexplore.ieee.org/iel5/10671/33675/01602354.pdf?tp=&arnumber=1602354&isnumb

er=33675 

[Morisio 2002] 
Morisio, M., Ezran, M., & Tully, C. ―Success and Failure Factors in Software Reuse.‖ IEEE 

Transactions on Software Engineering 28, 4 (April 2002): 340−357. 

[O’Brien 2002] 
O'Brien, L., Stoermer, C., & Verhoef, C. Software Architecture Reconstruction: Practice 

Needs and Current Approaches (CMU/SEI-2002-TR-024, ADA407795). Software Engineer-

ing Institute, Carnegie Mellon University (2002). 

http://www.sei.cmu.edu/publications/documents/02.reports/02tr024.html  

[Polmann 2002] 
Polmann, M. & Schonefeld, M. ―An Evolutionary Integration Approach using Dynamic 

CORBA in a Typical Banking Environment.‖ Presented at the Case Studies Workshop (CSW) 

of the Sixth European Conference on Software Maintenance and Reengineering (CSMR 

2002). Budapest, Hungary, March 11−13, 2002. 

http://www.omg.org/corba/industries/bankfin/gad_csmr_budapest_2002.pdf 



36 | CMU/SEI-2008-TN-008 

[Radha 2004] 
Radha, V., Gulati, V., & Thapar, R. ―Evolution of Web Services Approach in SFMS – A Case 

Study,‖ 640−647. Proceedings of the IEEE International Conference on Web Services 

(ICWS'04). San Diego, CA (USA), July 6−9, 2004. IEEE Computer Society, 2004. 

[Violino 2007] 

Violino, B. ―How To Plan for SOA 2.0.‖ Baseline (March 8, 2007). 

http://www.baselinemag.com/article2/0,1540,2102088,00.asp  

[Zhang 2004] 

Zhang, J., Chung, J., & Chang, C. ―Migration to Web Services Oriented Architecture A 

Case Study,‖ 1624−1628. Proceedings of the 2004 ACM Symposium of Applied Computing. 

Nicosia, Cyprus, March 14 −17, 2004. ACM Press, 2004. 

 
 

http://www.baselinemag.com/article2/0,1540,2102088,00.asp


 

  

 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

June 2008 

3. REPORT TYPE AND DATES 

COVERED 

Final 

4. TITLE AND SUBTITLE 

SMART: Analyzing the Reuse Potential of Legacy Components in a Service-Oriented  

Architecture Environment 

5. FUNDING NUMBERS 

FA8721-05-C-0003 

6. AUTHOR(S) 

Grace A. Lewis, Edwin J. Morris, Dennis B. Smith, Soumya Simanta 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 

Carnegie Mellon University 

Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2008-TN-008 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 

 

11. SUPPLEMENTARY NOTES 

 

12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 

13. ABSTRACT (MAXIMUM 200 WORDS) 

Service-oriented architecture (SOA) has become an increasingly popular mechanism for achieving interoperability between systems. 

Because it has characteristics of loose coupling, published interfaces, and a standard communication model, SOA enables existing leg-

acy systems to expose their functionality as services, presumably without making significant changes to the legacy systems. Migration 

of legacy systems to service-oriented environments has been achieved within a number of domains including banking, electronic 

payment, and development tools showing that the promise is beginning to be fulfilled. While migration can have significant value, any 

specific migration requires a concrete analysis of the feasibility, risk, and cost involved. This technical note describes a new release of 

the Service Migration and Reuse Technique (SMART), which was initially developed in 2005. The Carnegie Mellon® Software Engineer-

ing Institute (SEI) SMART process helps organizations to make initial decisions about the feasibility of reusing legacy components as 

services within an SOA environment. SMART considers the specific interactions that will be required by the target SOA environment 

and any changes that must be made to the legacy components. To achieve this, SMART gathers information about legacy components, 

the target SOA environment, and candidate services to produce (1) a preliminary analysis of the viability of migrating legacy compo-

nents to services, (2) an analysis of the migration strategies available, and (3) preliminary estimates of the costs and risks involved in 

the migration. 

14. SUBJECT TERMS 

Migration, legacy systems, service-oriented architecture, SOA, SMART 

15. NUMBER OF PAGES 

46 

16. PRICE CODE 

 

17. SECURITY CLASSIFICATION OF 

REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 

OF THIS PAGE 

Unclassified 

19. SECURITY 

CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20. LIMITATION OF 

ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 


	SMART: Analyzing the Reuse Potential  of Legacy Components in a  Service-Oriented Architecture  Environment
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Basic SOA Concepts
	3 Challenges of Migration to SOA Environments
	4 Service Migration and Reuse Technique (SMART)
	Appendix A The Service Migration Interview Guide (SMIG)
	Appendix B - The SMART Tool
	References


